WHAT ARE THEY AND WHAT CAUSES THEM?
What is an ice age?
An ice age is a long interval of time (millions to tens of millions of years) when global temperatures are relatively cold and large areas of the Earth are covered by continental ice sheets and alpine glaciers. Within an ice age are multiple shorter-term periods of warmer temperatures when glaciers retreat (called interglacials or interglacial cycles) and colder temperatures when glaciers advance (called glacials or glacial cycles).
At least five major ice ages have occurred throughout Earth’s history: the earliest was over 2 billion years ago, and the most recent one began approximately 3 million years ago and continues today (yes, we live in an ice age!). Currently, we are in a warm interglacial that began about 11,000 years ago. The last period of glaciation, which is often informally called the “Ice Age,” peaked about 20,000 years ago. At that time, the world was on average probably about 10°F (5°C) colder than today, and locally as much as 40°F (22°C) colder.
What causes an ice age and glacial-interglacial cycles?
Many factors contribute to climate variations, including changes in ocean and atmosphere circulation patterns, varying concentrations of atmospheric carbon dioxide, and even volcanic eruptions. The following discusses key factors in (1) initiating ice ages and (2) the timing of glacial-interglacial cycles.
One significant trigger in initiating ice ages is the changing positions of Earth’s ever-moving continents, which affect ocean and atmospheric circulation patterns. When plate-tectonic movement causes continents to be arranged such that warm water flow from the equator to the poles is blocked or reduced, ice sheets may arise and set another ice age in motion. Today’s ice age most likely began when the land bridge between North and South America (Isthmus of Panama) formed and ended the exchange of tropical water between the Atlantic and Pacific Oceans, significantly altering ocean currents.
Glacials and interglacials occur in fairly regular repeated cycles. The timing is governed to a large degree by predictable cyclic changes in Earth’s orbit, which affect the amount of sunlight reaching different parts of Earth’s surface. The three orbital variations are: (1) changes in Earth’s orbit around the Sun (eccentricity), (2) shifts in the tilt of Earth’s axis (obliquity), and (3) the wobbling motion of Earth’s axis (precession).
How do we know about past ice ages?
Scientists have reconstructed past ice ages by piecing together information derived from studying ice cores, deep sea sediments, fossils, and landforms.
Ice and sediment cores reveal an impressive detailed history of global climate. Cores are collected by driving long hollow tubes as much as 2 miles deep into glacial ice or ocean floor sediments. Ice cores provide annual and even seasonal climate records for up to hundreds of thousands of years, complementing the millions of years of climate records in ocean sediment cores.
Within just the past couple of decades, ice cores recovered from Earth’s two existing ice sheets, Greenland and Antarctica, have revealed the most detailed climate records yet.
Do ice ages come and go slowly or rapidly?
Records show that ice ages typically develop slowly, whereas they end more abruptly. Glacials and interglacials within an ice age display this same trend.
On a shorter time scale, global temperatures fluctuate often and rapidly. Various records reveal numerous large, widespread, abrupt climate changes over the past 100,000 years. One of the more recent intriguing findings is the remarkable speed of these changes. Within the incredibly short time span (by geologic standards) of only a few decades or even a few years, global temperatures have fluctuated by as much as 15°F (8°C) or more. For example, as Earth was emerging out of the last glacial cycle, the warming trend was interrupted 12,800 years ago when temperatures dropped dramatically in only several decades. A mere 1,300 years later, temperatures locally spiked as much as 20°F (11°C) within just several years. Sudden changes like this occurred at least 24 times during the past 100,000 years. In a relative sense, we are in a time of unusually stable temperatures today—how long will it last? – Utah Geological Survey
article website here
This is a mystery to me. Why, when the subject of Climate Change come up, why does nobody ask the “experts” and the politicians to explain the past 2.4 billions of Ice Ages to which the planet has been subjected? From what I have read, Ice Ages have a cycle. Planet cools, ice forms, planet warms up, ice melts. Has happened for billions of years. All having occurred prior to the use of fossil fuels of any kind. A person might think that humans have nothing to do with the planet warming up because it is supposed to warm up.
…For example, as Earth was emerging out of the last glacial cycle, the warming trend was interrupted 12,800 years ago when temperatures dropped dramatically in only several decades. A mere 1,300 years later, temperatures locally spiked as much as 20°F (11°C) within just several years. Sudden changes like this occurred at least 24 times during the past 100,000 years. In a relative sense, we are in a time of unusually stable temperatures today—how long will it last?…
Huh? Sudden temperature changes have occurred at least 24 times during the past 100,000 years? That is waaaaaay before the invention of the automobile.
Here in Thunder Bay, there was a time where the ice sheet covering this area was over 2 kilometers thick. The fact that the ice has now melted is bad or good? If the Climate Change Cult members were around when the ice was 2 kilometers thick, would they be gluing themselves to it and saying that we need to “Stop Fire”? Would there be a “Stop Fire” movement?
Seriously, Climate Change has been going on for billions of years. Its a cycle. It has nothing to do with humans. It has happened many time long before humans existed and will continue on long after war has made humans extinct.
Hmmmmmm…..